If it's not what You are looking for type in the equation solver your own equation and let us solve it.
b^2+8b-77=-9
We move all terms to the left:
b^2+8b-77-(-9)=0
We add all the numbers together, and all the variables
b^2+8b-68=0
a = 1; b = 8; c = -68;
Δ = b2-4ac
Δ = 82-4·1·(-68)
Δ = 336
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{336}=\sqrt{16*21}=\sqrt{16}*\sqrt{21}=4\sqrt{21}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-4\sqrt{21}}{2*1}=\frac{-8-4\sqrt{21}}{2} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+4\sqrt{21}}{2*1}=\frac{-8+4\sqrt{21}}{2} $
| x+2=10(x-2) | | x2=10x+21/2x | | -2/3(x+1)=6 | | 9x=132 | | 16n=45+11n | | 10x-199=x+15x | | -1.50x=33.96x | | 3/2(m-2)=21 | | 33.96=x-1.50 | | 5x+2x+1=12+3 | | 0.5(x-28)=1+8x | | 2x+7(5x-8)=14 | | 0.25p+0.25=0.5 | | 33.96x=x-1.50 | | 14x=195 | | 19x=195 | | 1.99x+6=+2.50x | | 7x-9°=4x+22° | | 5x+(4x-11)+x=180 | | 9^3x+2=3^x+3 | | 7x+-9°=4x+22° | | 6n-9=13 | | 8x+28=86 | | -12x+8x=-96 | | 140x-84=140x-84 | | 5x+(3x-5)+x=180 | | 6x+34=74 | | 2(g+6)=-26 | | 4(-2-1)-4y=20 | | 1/2(x-28)=1+8x | | -3x+7=@x+17 | | 35+2x=49 |